MODIFICATION HISTORY

MODEL NAME : KE-P37XS1/P42XS1 KE-MX42A1/MX42S1/MX42M1 KDE-P37XS1/P42XS1

SERVICE MANUAL

PARTS No. : 9-878-248-02

* Blue characters are linking.

No.	DATA	CONTENTS
	2004. 6	Addition of Hong Kong, ME, China, OCE and UK Models. Correction of The Parts Information. (P.83)

KE-P37XS1/P42XS1 KDE-P37XS1/P42XS1 KE-MX42A1/MX42S1/MX42M1

PANEL MODULE SERVICE MANUAL

PDP Module Name FPF37C128128UB FPF42C128128UC

KE-P37XS1 AEP Model KE-P42XS1 AEP Model KDE-P37XS1 UK Model KDE-P42XS1 UK Model Hong Kong Model KE-MX42A1 KE-MX42A1 ME Model **KE-MX42M1** China Model **KE-MX42S1** OCE Model

FLAT PANEL COLOR TV

CONTENTS

1 OUTLINE	
1.1 Panel Dimension	1
1.2 Feature	1
1.3 Specification	2
1.3.1 Functional specification	2
1.3.2 Display quality specification	3
1.3.3 I/O Interface Specification	4
1.3.4 Connector Specifications	7
2 SAFETY HANDLING of THE PLASMA DISPLAY	
2.1 Notes to Follow During Servicing	10
3 NAME and FUNCTION	
3.1 Configuration	11
3.2 Block Diagrams	12
3.2.1 Signal Diagrams	12
3.2.2 Power Diagrams	13
3.3 Function	14
3.3.1 Logic board Function	14
3.3.2 Function of X-SUS Board	23
3.3.3 Function of Y-SUS Board	23
3.4 Protection function	24
4 PROBLEM ANALYSIS	
4.1 Outline of Repair Flow	25
4.2 Outline of PDP Module Repair Flow	26
4.3 Checking the Product Requested for Repair	29
4.4 Operation Test Procedure	31
4.5 Fault Symptom	32
4.6 Problem Analysis Procedure	35
4.6.1 "The entire screen does not light.(Main power is turned off)" Problem analysis	
procedure	35
4.6.2 "Vertical line/Vertical bar" Problem analysis procedure	42
4.6.3 "Horizontal bar" Problem analysis procedure	46
4.7 Problem Analysis Using a Personal Computer	47
4.7.1 Connecting a computer	47
4.7.2 Preparing a computer	47
4.7.3 Problem Analysis Procedure	48
5 Disassembling and Reassembling	
5.1 Exploded View	52

5.2 X-SUS Circuit Board Removal/Installation Procedure	53
5.3 Y-SUS Circuit Board Removal/Installation Procedure	55
5.4 ABUS-L Circuit Board Removal/Installation Procedure	57
5.5 ABUS-R Circuit Board Removal/Installation Procedure	59
5.6 LOGIC Board Removal/Installation Procedure	61
5.7 Complete Panel Chassis Removal/Installation Procedure	63
6 Operation Check and Adjustment Method	
6.1 List of Check and Adjustment Items	66
6.2 Check and Adjustment Method	67
6.2.1 Check and adjustment procedure	67
6.2.2 Parameter adjustment	68
6.2.3 Operation performance check items	70
6.2.4 Heat Run Test	72
6.2.5 Logic board parameter forwarding	74
6.2.6 Accumulation time reset	76
6.2.7 Setup before shipment	77
7 37A1 Mechanical drawing	
FPF37C128128UB-63, 73	
8 THE PARTS INFORMATION	83

Scope; 42A1 series

(Model name; FPF42C128128UC)

Before doing the service operation please be sure to read this service analysis manual. This module has a lot of devices to secure the safety against the fire, electric shock, injury and harmful radiation. To maintain the safety control, please follow the instructions and remarks described in this service analysis manual.

1 OUTLINE

The module is a plasma display module which can be designed in there is no fan in addition to a general feature of the plasma display such as a flat type, lightness, and high-viewing-angle and terrestrial magnetism.

1.1 PANEL DIMENSION

1.2 FEATURE

- 1. For high definition television by ALIS method
- 2. For FAN Less design(Low consumption electric power)
- 3. Flat type · Lightness
- 4. Customizing of module equipped with communication function

1.3 SPECIFICATION

1.3.1 Functional specification

ltem			Specification	
	item	NO	UC-5X	
Externals	Module size	1	994 × 585 × 66mm	
	Weight	2	16kg	
Display panel	Display size	3	921.60 × 522.24mm (42inch: 16:9)	
	Resolution	4	1024 × 1024 pixel	
	Pixel pitch	5	0.90(H) × 0.51(V)mm	
	Sub pixel pitch	6	0.30(H) × 0.51(V)mm	
Color	Grayscale(standard)	7	RGB each color 256 Grayscale	
BrightNess	White(display load Ratio 100%)	8	140cd/ m ²	
	White(display load Ratio 1%,standard)	9	(1000) cd/ m ²	
Chromaticity Coordinates	(x,y), white 10%	10	(0.300,0.300)	
Contrast	Contrast in Darkroom(60Hz)	11	(1000:1)	
Data signal	Video signal (RGB each color)	12	LVDS(10bit)	
	Dot clock(max)	13	52MHz	
Sync Signal	Horizontal Sync Signal(max)	14	50KHz(LVDS)	
	Vertical Sync Signal	15	50Hz ± 1.9 / 60 ± 1.7Hz (LVDS)	
Powersupply	Input voltage/current	16	+3.3/+5/+75-90/+50-65Vpc, 0.05/6/4/2A	
	Standby electric power(max)	17	1W	
Noise	Shade noise at 18dB(A) or less	18	25dB(A) or less	
Guarantee	Temperature(operation)	19	0 ~ 45 °C	
chillionnent	Temperature(storage)	20	0 ~ 45 °C	
	Humidity(operation)	21	20 ~ 85 %RH (no condensation)	
	Humidity(storage)	22	20 ~ 80 %RH (no condensation)	

*It is made to give priority when there is a delivery specification according to the customer.

1.3.2 Display quality specification

	Itom	NO	Specification	
	item	NO	UC-51 (Standard)	
Non-lighting cell	Total number (subpixel)	1	15 or less	
	Density (subpixel/cm ²)	2	2 or less (However,1 continuousness or less)	
	Size (H x V) (subpixel)	3	1x2 or less, Or 2x1 or less	
Non-extinguishing	Total number (subpixel)	4	6 or less (each color 2 or less)	
	Density (subpixel/ cm ²)	5	Each color 2 cells max (However,1 continuousness or less)	
Flickering cell defect	Flickering lighting cell defect (sub pixel/cm ²)	6	5 or less	
	Flickering non-extinguishing cell defect	7	Number on inside of Non-extinguishing cell defect	
High intensity cell defect	Twice or more bright point	8	0	
Brightness variation	White block of 10% load [9 point] (%)	9	20 or less	
	In area adjacent 20mm [White] (%)	10	10 or less	
Color variation	White block of 10% load [9 point]	11	X: Average \pm 0.015 y: Average \pm 0.015	

*It is made to give priority when there is a delivery specification according to the customer.

1.3.3 I/O Interface Specification

(1) I/O Signal

No.	ltem	Signal Name		Number of signals	I/O	Form	Content of definition		
1	y data	Video Signal Timing Signal	RA- RA+ RB- RC- RC+ RD- RD+ RE- RE+	1 1 1 1 1 1 1 1 1	Input	LVDS Differential	Differential serial data signal. Input video and timing signals after differential serial conversion using a dedicated transceiver. The serial data signal is transmitted seven times faster than the base signal.		
	Displar	Clock	RXCLKIN- RXCLKIN+	1 1	Input	LVDS Differential	Differential clock signal. Input the clock signal after differential conversion using a dedicated transceiver. The clock signal is transmitted at the same speed as the base signal.		
		Power down Signal	PDWN	1	Input	LVTTL	Low :LVDS receiver outputs are all "L". High: Input signals are active.		
		Communication	SDA	1	I/O	LVTTL	I ² C bus serial data communication signal.		
	ontrol		SCL	1	I/O	(I ² C)	Communication with the control MPU of this product is enabled.		
2	MPU Communication / Co	cation / Co	ication / Co	ication / Oc	CPUGO	1	Input	LVTTL	Low power consumption mode of the control MPU of this product is released.
2			PDPGO	1	Input	LVTTL	"High": This product is started. (CPUGO="High" Effective)		
		MPU Cor		IRQ	1	Output	LVTTL	It changes into "Low" → "High" when this product enters the undermentioned state. 1. Vcc/Va/Vs output decrease 2. Circuit abnormality detection	

(2) LVDS Signal Definition and Function

A video signal (display data signal and control signal) is converted from parallel data to serial data with the LVDS transmitter and further converted into four sets of differential signals before input to this product.

These signals are transmitted seven times faster than dot clock signals.

The dot clock signal is converted into one set of differential signals by the transmitter before input to this product.

The LVDS signal definition and function are summarized below:

Signal name	Symbol	Number of signals	Signal definition and function
Video signal	RA-	1	Display data signal
Timing signal	RA+	1	R2, R3, R4, R5, R6, R7, G2
Transmission line	RB-	1	Display data signal
	RB+	1	G3, G4, G5, G6, G7, B2 B4
	RC-	1	Display data signal, Sync Signal, Control signal
	RC+	1	B4, B5, B6, B7, Hsync, Vsync, BLANK
	RD-	1	Display data signal, Control signal
	RD+	1	R8, R9, G8, G9, B8, B9, PARITY
	RE-	1	Display data signal, Control signal
	RE+	1	R0, R1, G0, G1, B0, B1, N.S
Clock transmission line	RXCLKIN- RXCLKIN+	1	Clock signal DCLK

(3) Video Signal Definition and Function

The table below summarizes the definitions and functions of input video signals before LVDS conversion.

ltem	Signal na	ame	Number of signals	Input/ output	Signal definition and function
Original Display signal (before LVDS	Video signal (digital RGB)	DATA-R DATA-G DATA-B	10 10 10	Input	Display data signal R9/G9/B9 is the highest intensity bit. R0/G0/B0 is the lowest intensity bit.
transmittance)	Data Clock	DCLK	1	Input	Display data timing signal: Data are read when DCLK is lowerd. DCLK is continuously input.
	Horizontal sync signal	Hsync	1	Input	Regulates one horizontal line of data: Begins control of the next screen when Hsync is lowered.
	Vertical sync signal	Vsync	1	Input	Screen starts up control timing signal: Begins control of the next screen when Vsync is lowered. Input the same frequency in both odd-numbered and even-numbered fields.
	Parity signal	PARITY	1	Input	This signal specifies the display field. H: Odd-numbered field L: Even-numbered field Parity signal should be alternated in every Vsync cycle.
	Blanking signal	BLANK	1	Input	 Display period timing signal. H indicates the display period and L indicates the non display period. Note: Set this timing properly like followings, as is used internally for signal processing. Set the blanking period so that the number of effective display data items in one horizontal period is 1024. Set the number of blanking signals in one vertical period to 512, which is one half the number of effective scan lines. If the BLANK changes when the Vsync frequency is switched, the screen display may be disturbed or brightness may change. The screen display is restored to the normal state later when the BLANK length is constant again.

*This product does not correspond to the progressive display mode by the parity signal fixation. When the parity signal is fixed, this product is reversed arbitrarily internally and used.

1.3.4 Connector Specifications

The connector specification is shown below. Please do not connect anything with the terminal NC.

(1) Signal connector [CN1]

Pin No.	Signal name	Pin No.	Signal name
1	RA-	2	GND(LVDS)
3	RA+	4	SCL
5	RB-	6	GND
7	RB+	8	SDA
9	RC-	10	GND(LVDS)
11	RC+	12	CPUGO
13	RXCLKIN-	14	PDPGO
15	RXCLKIN+	16	IRQ
17	RD-	18	PDWN
19	RD+	20	GND(LVDS)
21	RE-	22	GND
23	RE+	24	GND
25	GND	26	GND
27	GND	28	GND
29	GND	30	GND

DF13-30DP-1.25 V (tin-plated) (Maker: HIROSE DENKI)

[Conforming connector] Housing: DF13-30DS-1.25C Contact: DF13-2630SCF

(2) Power Source Connectors (PSU only is used on repair working)

(a) Power input connector [CN61]

Pin No.	Symbol
1	AC(L)
2	N.C
3	AC(N)
4	N.C
5	N.C
6	F.G

B06P-VH (Maker: JST)

[Conforming connector] Housing: VHR-06N(or M) Contact: SVH-21T-P1.1 (b) Power supply output connector for system [CN62]

Pin No.	Symbol	B03P-VH (Maker: JST)
1	V _{AUX}	
2	N.C	[Conforming connector] Housing: VHR-06N(or M)
3	GND	Contact: SVH-21T-P1.1

(c) Power supply output connector for system [CN63]

Pin No.	Symbol	
1	Vpr1	
2	N.C.	B5B-XH-A (Maker: JST)
3	Vpr2	
4	N.C.	[Conforming connector] Housing: XHP-5
5	GND	Contact: SXH-001T-P0.6

- (iii) Power Source Connectors
- (a) Power supply output connector for system [CN6]

Pin No.	Symbol	
1	Vpr2	
2	N.C.	
3	GND	
4	GND	
5	N.C.	
6	Vcc	

B6B-PH-SM3(JST)

[Conforming connector] Housing: PHR-6 Contact: SPH-002T-P0.5L (b) [CN23]

Pin No.	Symbol	
1	Va	
2	N.C.	
3	Vcc	
4	GND	
5	GND	
6	GND	
7	N.C.	В
8	Vs	
9	Vs	[
10	Vs	

B10P-VH(JST)

Conforming connector] Housing: VHR-10N Contact: SVH-21T-P1.1

(c) Power supply output connector for system [CN7]

Pin No.	Symbol	Symbol Pin No.		
1	N.C.	11	GND	
2	N.C.	12	Vra	
3	N.C.	13	GND	
4	N.C.	14	Vrs	
5	GND	15	GND	
6	VSAGO	16	lak	
7	GND	17	GND	
8	VCEGO	18	Vak	
9	GND	19	GND	
10	PFCGO	20	Vsk	

00 6200 520 330 000 [ZIF Right Angle Connector] (Kyocera elco)

2 SAFETY HANDLING of THE PLASMA DISPLAY

2.1 NOTES TO FOLLOW DURING SERVICING

- The work procedures shown with the <u>Note</u> indication are important for ensuring the safety of the product and the servicing work. Be sure to follow these instructions.
- Before starting the work, secure a sufficient working space.
- At all times other than when adjusting and checking the product, be sure to turn OFF the main POWER switch and disconnect the power cable from the power source of the display (jig or the display itself) during servicing.
- To prevent electric shock and breakage of PC board, start the servicing work at least 30 seconds after the main power has been turned off. Especially when installing and removing the power supply PC board and the SUS PC board in which high voltages are applied, start servicing at least 2 minutes after the main power has been turned off.
- While the main power is on, do not touch any parts or circuits other than the ones specified. The high voltage power supply block within the PDP module has a floating ground. If any connection other than the one specified is made between the measuring equipment and the high voltage power supply block, it can result in electric shock or activation of the leakage-detection circuit breaker.
- When installing the PDP module in, and removing it from the packing carton, be sure to have at least two persons perform the work while being careful to ensure that the flexible printed-circuit cable of the PDP module does not get caught by the packing carton.
- When the surface of the panel comes into contact with the cushioning materials, be sure to confirm that there is no foreign matter on top of the cushioning materials before the surface of the panel comes into contact with the cushioning materials. Failure to observe this precaution may result in the surface of the panel being scratched by foreign matter.
- When handling the circuit PC board, be sure to remove static electricity from your body before handling the circuit PC board.
- Be sure to handle the circuit PC board by holding the such large parts as the heat sink or transformer. Failure to observe this precaution may result in the occurrence of an abnormality in the soldered areas.
- Do not stack the circuit PC boards. Failure to observe this precaution may result in problems resulting from scratches on the parts, the deformation of parts, and short-circuits due to residual electric charge.
- Routing of the wires and fixing them in position must be done in accordance with the original routing and fixing configuration when servicing is completed. All the wires are routed far away from the areas that become hot (such as the heat sink). These wires are fixed in position with the wire clamps so that the wires do not move, thereby ensuring that they are not damaged and their materials do not deteriorate over long periods of time. Therefore, route the cables and fix the cables to the original position and states using the wire clamps.
- Perform a safety check when servicing is completed. Verify that the peripherals of the serviced points have not undergone any deterioration during servicing. Also verify that the screws, parts and cables removed for servicing purposes have all been returned to their proper locations in accordance with the original setup.

3 NAME and FUNCTION

3.1 CONFIGURATION

(1) FPF42C128128UC-53 (LOGIC set out left side)

3.2 BLOCK DIAGRAMS

3.2.1 Signal Diagrams

3.2.2 Power Diagrams

3.3 FUNCTION

3.3.1 Logic board Function

(1) Data Processor

- γ adjustment(1 / 2.2 / 2.4 / 2.6 / 2.8)
- NTSC/EBU format(Color matrix) Switch
- RGB gain Control(White balance adjustment, Amplitude limitation)
- Error Diffusion Technology(Grayscale adjustment)
- Dither(Grayscale adjustment)
- Burn-in Pattern generation

(2) Data Converter

- Quasi out-line adjustment (luminous pattern control)

(3) Scan Controller

- Address driver control signal generator(ADM)
- scan driver control signal generator(SDM)
- X/Y sustain control signal generator

(4) Waveform ROM

- Waveform Pattern for drive / Timing memory

(5) MPU

- Synchronous detection
- System control
- Driving voltage(Va, Vs, Vr, Vw) Minute adjustment
- Abnormal watch (breakdown detection)/abnormal processing
- Is(sustain) current control (sustain pulse control)
- la(address) current control (sub-field control)
- External communication control
- Flash memory (firmware)

(6) EEPROM

- Control parameter memory
- The accumulation energizing time (Every hour).
- Abnormal status memory (16 careers)

Sub	Data		Setting [hex	Setting [hex]			
Address	bit	Symbol	Item	Function	RANGE	INITIAL value	
00	7-0	MAPVER	address MAP VERsion	Indicates the version number of the address map.	00 ~ FF	01	
	7	ERRF	update of ERRor Flag	Indicates that an error has occurred. It can be cleared with the ErrRST setting. If this flag is set, Error code is written. Cannot enter the PDP-ON mode.	0: Not updated 1: Updated	0	
01	6	OHRF update of Operation HouRs Flag		0: Not updated 1: Updated	0		
	5 PSDF Power Shut Down Flag		Power Shut Down Flag	Indicates that shutdown of the AC power is detected and the PDP has executed the OFF-sequence. It can be cleared with the PSDRST setting.	0: Not detected 1: Detected	0	
	4-0	CNDC	CoNDition Code	Indicates status of the module.	Refer to 4.11.2.6 condition codes.	Irregular	
02	7-0	ERRC	ERRor Code	Indicates error code. The error codes of as many as 16 errors in the past can be retrieved with the ERRS setting Same error code is not stored continuously.	00~FF	00	
03	7-0	OHRH	Operation HouRs Higher bits	Indicates the higher 8 bits of the module driving hours.	00~FF	00	
04	7-0	OHRL	Operation HouRs Lower bits	Indicates the lower 8 bits of the module driving hours.	00~FF	00	

Quik	Data				Setting [hex]		
Address	dress bit Symbol		ltem	Function	RANGE	INITIAL value	
	7	PATSEL	Selecting patterns	It selects the built-in test pattern signals of this display. This setting is valid when the PATON setting is 1.	0: The single color display is switched every 2 seconds. A total of 8 colors are displayed.	0	
					from actual white.)		
	6	PATON	Built-in pattern display is set to ON.	Display of the built-in pattern signal in this product is turned ON/OFF.	0: Displaying the input signal 1: Displaying the built-in pattern	0	
			Address data enable	The black screen is displayed.	0: Blank		
	5	ADEN		0 is set when the input video signal has disturbance.	1: Displaying the input signal	1	
20	4 -	-	-	Be sure to use the display with the setting fixed to 0.	0~1	0	
20	3	DSPPOL	DiSPlay POLarity	Input reflection polarity setting	0:Emits light by LOW 1:Emits light by High	1	
	2	PFCON	forcing PFC ON	When PFCON = 0, If a high voltage power is switched on, PFCGO is set high before a high voltage power is output. When PDPON = 1, PFCGO is set high irrespective of the state of a high voltage power. Use it for a power control when a high voltage power is off.	0: Power OFF 1: Power ON	0	
	1	PDPON	High voltage power supply ON	Switches ON/OFF the high voltage power supply of PDP.	0: Power OFF 1: Power ON	0	
	0	DSPBIT	Input Data bit	Switches 8 bit input / 10 bit input	0: 10 bit input 1: 8bit input	1	

			Setting [hex]			
Address	bit	Symbol	ltem	Function	RANGE	INITIAL value
	7-5	-	-	Be sure to use the display with the setting fixed to 0.	0~7	0
	4	CCFMD	Color correction mode	Selecting the color correction modes. Valid when the CCFON setting is 1	0:Luminance has priority. 1:Gradation has priority	0
	3	DCBON	Dynamic Color Balance	Tracking correction of white balance between the high luminance and the low luminance.	0: OFF 1: ON	0
21	2	PPAON	Panel Protect Apc function	When a picture with high luminance/small area is displayed for about 3 minutes or longer, the number of pulses is reduced to about 20% at a maximum. This item can be used to reduce panel temperature/extend useful life when the display is used to show a still image.	0: OFF 1: ON	1
	1	APSON	Auto Peak Save function	If a low display load picture (less than 2%) is inputted continuously 3 minutes or more, the brightness is reduced about 50 %.	0: OFF 1: ON	1
	0	DSETEN	Data Set Enable	 Whether the register value is reflected to the operating status of this product, selected by this item. The following switch is executed. 0:The received register value is reflected from the next field. 1:The received register value is stored so that the DSET setting is reflected from the next field. (DSET setting: Setting bit 0 of address FF) 	0: Invalid 1: Valid	1
	7	CCFON	Color correction	Color collection process is turned ON/OFF.	0: OFF 1: ON	0
	6	CCFORM	Color correction format	Color collection process is switched. This item is valid when CCFON setting is 1.	0: NTSC 1: EBU	0
22	5-3	-	-	Be sure to use the display with the setting fixed to 0.	0~7	0
22	2-0	GAMSEL	Selecting the reverse γ correction	Reverse γ correction level is set. The setup 7 is the test mode. Do not select the setup 7. When the setup 6 is selected, setting of the addressed in the range of 31~51 become valid.	0: OFF 1: 1.0 th power 2: 2.2 nd power 3: 2.4 th power 4: 2.6 th power 5: 2.8 th power 6: USER 7: TEST	2

Quit	Dete				Setting [hex]		
Sub Address	bit	Symbol	ltem	Function	RANGE	INITIAL value	
23	7-0	CONTrast	Peak luminance	Peak luminance is adjusted. When the display picture load is heavy, the peak luminance is automatically limited.	00~FF	FF	
24	7-0	R-RATIO	R ratio	White balance is adjusted.	00~FF	FF	
25	7-0	G-RATIO	G ratio	Use the display with at least one item being set to FF (hex).	00~FF	FF	
26	7-0	B-RATIO	B ratio		00~FF	FF	
	7	IRQRST	Clearing the IRQ output signal	This item implements control to return the IRQ signal from "HIGH" to "Low" level when an error occurs. When this item is set to 1, the IRQ signal is returned to "Low" level.	0: Normal 1: IRQ signal clear	0	
27	6	ERRRST	Clearing the ERRF flag	This item implements control to return the ERRF flag to 0 when an error occurs. When this item is set to 1, this setting automatically returns to 0 after returning the ERRF flag to 0.	0: Normal 1: ERRFflag clear	0	
	5	OHRRST	Clearing the OHRF flag	The control by which the OHRF flag is returned to 0 is done. This setting automatically returns to the state of 0 after returning 0 the ERRF flag when this setting is set to one.	0: Normal 1: OHRF flag clear	0	
	4	PSDRST	Clearing the PSDF flag	This item exercise control to return the PSDF flag to 0 when this machine performs the OFF sequence at AC power shutdown. When this item is set to 1, this setting automatically returns to 0 after returning the PSDF flag to 0.	0: Normal 1: PSDF flag clear	0	
	3-0	ERRS	Error code selection	When this setting is changed and the ERRC setting is read out, the error contents (as many as 16 errors) of the module that have occurred in the past can be checked. If more than 16 errors have occurred, the error code is updated starting from the oldest error.	0: Latest error 1: Previous error 2: E: F: Oldest error	0	

Curk	Data						Setting [hex]		
Address	bit	Symbol	Item		Func	tion	RANGE	INITIAL value	
	7	PWMP	Power Maximam peek control	The PWMA constant br power) con is necessar	X setting ightness trol. The y to turn	g is switched to (peak electric password setting on this setting.	When password is set 0:OFF 1:ON	0	
	6	-	-	Be sure to u setting fixed	use the o d to 0.	display with the	0-1	0	
28	5-4			PWMP=0	Setting electric	of the maximum power.	0: -40W 1: -20W 2: ±0W 3: +20W		
		PWMAX	Maximum power consumption	PWMP=1	Setting of peak electric power. Electric power by which electric power is permitted in addition to improve practical brightness to the maximum electric power set 3:+20W		0: ±0W 1: +20W 2: +30W 3: +40W	2	
	3-0	-	-	Be sure to a setting fixed	use the o d to 0.	display with the	0~F	0	
29	7-0	PWM PASS	Password of peak electric power setting	Password c setting.The the delivery password s the reading ground bec	of peak e passwo v specific etting is value of omes 51	electric power rd is described to cations. When the normally done, f the real thing I.	51: Permission of PWMP ON Another: Prohibition	FF	
2A	7-0	VRPASS	Password of VRPOL setting	If 'AA" is wr be changec	itten, VF J.	RPOL setting can	00~FF	00	
	7-4	-	-	-			0~F	0	
2B	3-0	RISTIM	RISe TIMe	Setting of w stabilization sequence. Wait time [r (Ma x:3000	Setting of wait time for Vs/Va stabilization at the time of start up sequence. Wait time [ms] = 200×Set value (Ma x:3000[ms])		0~F	5	
2C	7-0	PsTPW	Ps-Tank PoWer	The maximum electric power setting: The maximum over electric power from +20W		The maximumWhen the amount of an over electric power becomes00-FFThe maximum over electric power from +20WPSTPW ×PSTTM or less at00-FF		28	
2D	7-0	PsTTM	Ps-Tank TiMe	Time which operate by maximum c electric pov (*10sec)	can the over ver	control by which brightness is lowered is done.	00-FF	3C	

					Setting [hex]		
Sub Address	Data bit	Symbol	ltem	Function	RANGE	INITIAL value	
	7-4	-	-	Be sure to use the display with the setting fixed to C.			
30	3 VRPOL Ref PO		Voltage Reference POLarity	 Setting of Vrs/Vra output polarity. Set in the following procedures. 1) Write "AA" in the address 2A. 2) Write "0" or "1" in this address. 3) Write other than "AA" in the address 2A. 	0: POSI 1:NEGA	0	
	2-0	-	-	Be sure to use the display with the setting fixed to 0.			
31	7-0	GAM00	Reverse γ correction DC	Sets the input level that implements the forced 0 [LSB] output.	00~FF	1F	
22	7-2	-	<no use=""></no>	-	00.55	00	
32	1-0	GAM01[9: 8]	Reverse y	Reverse γ coefficient value is set.	00~FF	00	
33	7-0	GAM01[7: 0]	coefficient 01	Input Output value of 8 [LSB]	00~FF	04	
24	7-3	-	<no use=""></no>	-		00	
34	2-0	GAM02[10: 8]	Reverse y	Reverse γ coefficient value is set.	- 00~FF	00	
35	7-0	GAM02[7: 0]	correction 02	Input Output value of 16 [LSB]	00~FF	24	
	7-4 -		<no use=""></no>	-			
36	3-0	GAM03[11:8]	Reverse γ correction 03	Reverse γ coefficient value is set. Input Output value of 24 [LSB]	00~FF	00	
37	7-0	GAM03 [7: 0]			00~FF	58	
	7-4	-	<no use=""></no>	-		-	
38	3-0	GAM04[11: 8]	Reverse γ correction 04	Reverse γ coefficient value is set. Input Output value of 32 [LSB]	00~FF	00	
39	7-0	GAM04[7: 0]			00~FF	A7	
	7-5	-	<no use=""></no>	-	00.55	04	
3A	4-0	GAM05[12: 8]	Reverse y	Reverse γ coefficient value is set.	- 00~FF	01	
20	7-1	GAM05[7: 1]	correction 05	Input Output value of 40 [LSB]	00.55	10	
38	0	-	<no use=""></no>	-	00~FF	12	
20	7-5	-	<no use=""></no>	-	0055	01	
30	4-0	GAM06[12: 8]	Reverse y	Reverse γ coefficient value is set.	00~FF	01	
3D	7-1	GAM06[7: 1]	correction 06	Input Output value of 48 [LSB]	00~55	0.0	
50	0	-	<no use=""></no>	-		37	
3E	7-5	-	<no use=""></no>	-	00~55	02	
JE	4-0	GAM07[12: 8]	Reverse y	Reverse γ coefficient value is set.			
ЗE	7-2	GAM07[7: 2]	correction 07	Input Output value of 56 [LSB]	00~FF	40	
51	1-0	-	<no use=""></no>	-		40	

Ch	Data				Setting [hex]		
Address	bit	Symbol	ltem	Function	RANGE	INITIAL value	
40	7-5	-	<no use=""></no>	-	00 FF		
40	4-0	GAM08[12: 8]	Reverse v	Reverse v coefficient value is set.	- 00~FF	03	
	7-2	GAM08[7: 2]	correction 08	Input Output value of 64 [LSB]	00 FF		
41	1-0	-	<no use=""></no>	-	- 00~FF	04	
40	7-6	-	<no use=""></no>	-	00 FF		
42	5-0	GAM09[13: 8]	Reverse y	Reverse γ coefficient value is set.	- 00~FF	04	
42	7-4	GAM09[7: 4]	correction 09	Input Output value of 80 [LSB]	00.55	50	
43	3-0	-	<no use=""></no>	-	00~FF	FU	
11	7-6	-	<no use=""></no>	-	00~EE	07	
	5-0	GAM11[13: 8]	Reverse γ	Reverse γ coefficient value is set.	0011	07	
45	7-4	GAM11[7: 4]	correction 10	Input Output value of 96 [LSB]	00~FF	60	
	3-0	-	<no use=""></no>	-	00 11	60	
46	7-6	-	<no use=""></no>	-	00~55	04	
40	5-0	GAM11[13: 8]	Reverse γ	Reverse γ coefficient value is set.	00-11-	04	
47	7-4	GAM11[7: 4]	correction 11	Input Output value of 112 [LSB]	00-55	50	
47	3-0	-	<no use=""></no>	-	00~FF	50	
48	7-6	-	<no use=""></no>	-	00~FF	0D	
	5-0	GAM12[13: 8]	Reverse y	Reverse γ coefficient value is set.			
49	7-4	GAM12[7: 4]	correction 12	Input Output value of 128 [LSB]	00~FF	00	
	3-0	-	<no use=""></no>	-			
4A	7-6	-	<no use=""></no>	-	00~FF	16	
	5-0	GAM13[13: 8]	Reverse y	Reverse γ coefficient value is set.			
4B	7-4	GAM13[7: 4]	correction 13	Input Output value of 160 [LSB]	00~FF	AO	
	3-0	-	<no use=""></no>	-			
4C	7-6	-	<no use=""></no>	-	00~FF	21	
_	5-0	GAM14[13: 8]	Reverse γ	Reverse γ coefficient value is set.			
4D	7-4	GAM14[7: 4]	correction 14	Input Output value of 192 [LSB]	00~FF	E0	
	3-0	-	<no use=""></no>	-			
4E	7-6	-	<no use=""></no>	-	00~FF	2F	
	5-0	GAM15[13: 8]	Reverse γ	Reverse γ coefficient value is set.			
4F	7-4	GAM15[7: 4]	correction 15	Input Output value of 224 [LSB]	00~FF	90	
	3-0	-	<no use=""></no>	-			
50	7	-	<no use=""></no>	-	00~FF	40 00	
	6-0	GAM16[14: 8]	Reverse γ	Reverse γ coefficient			
51	7-5	GAM16[7: 5]			00~FF		
	4-0	-	<no use=""></no>	-			

Sub	Data		Setting [hex]			
Address	bit	Symbol	ltem	Function	RANGE	INITIAL value
E5	7-0	UVrs	USER Vrs	Setting Vrs voltage Standard equation: Vrs=2.99*UVrs/255	00~AA	Adjusted in factory
E6	7-0	UVra	USER Vra	Setting Vra voltage Standard equation: Vra=2.99*UVra/255	00~AA	Adjusted in factory
	7-3	_	_	Be sure to use the display with the setting fixed to 0.	0	0
	2	RCLVr	UVrs/UVra RECALL	Resetting the UVrs, UVra in both of register and EEPROM to the initial value by setting RCLVr to 1.	0:Normal 1: UVrs,UVra	0
FE			-	This setting automatically returns to 0 after resetting the UVrs,Uvra.	initialized	
	1	EWRVr	UVrs/UVra	Storing the UVrs,UVra in register to EEPROM by setting EWRVr to 1.	0:Normal	0
			Write	This setting automatically returns to 0 after resetting the UVrs,UVra.	stored in EEPROM	
	0	_	_	Be sure to use the display with the setting fixed to 0.	0	0
	7-1	_	_	Be sure to use the display with the setting fixed to 0.	0	0
FF	0	DSET	Data setup	When the DSETEN setting is 1, setting this bit causes all the register setups that have been set up to now, to be reflected to the operation status of this product. They are reflected from the next field after this bit is accepted.	0: Normal 1: Execute	0

3.3.2 Function of X-SUS Board

- (1) DC/DC power supply block
 - Vs (+85V) → Vw (+185V) / Vx (+55V)
 - Vcc (+5V) \rightarrow XFve (+18V, floating) / Ve (+17V)
- (2) X switching block
 - Switching during address period Switching during sustain period Switching during reset period
- (3) Current detector block
 - Isx (sustain) current detection
 - lax (address) current detection
- (4) Voltage detector block
 - Vs (sustain) voltage detection
 - Va (address) voltage detection

3.3.3 Function of Y-SUS Board

- (1) DC/DC power supply block
 - Vcc (+5V) \rightarrow YFve (+18V, floating) / Ve (+17V)
- (2) Switching block

Switching during address period

Switching during sustain period

Switching during reset period

(3) Current detector block

- Isy (sustain) current detection
- Isp (SDM) current detection

3.4 PROTECTION FUNCTION

Abno	ormality part	State of protection operation (√:State change、There is no change at the blank.)										Reactivation condition when abnormal content is excluded	
		State	Vw,	Vx	Vs	Va	Vex	Vey	Vcc	Vpr	Va ux	AC Re-turn ing on	PFCgo Reset
	Overvoltage	Stop(no latch)	\checkmark										
~~~	Overcurrent	Delay Latch	$\checkmark$			Yes	Yes						
٧v	Overvoltage	Stop(no latch)	$\checkmark$			Yes	Yes						
V A	Overcurrent	Delay Latch	$\checkmark$			Yes	Yes						
	Overvoltage	Latch	$\checkmark$			Yes	Yes						
Vs	Low voltage	Latch	$\checkmark$			Yes	Yes						
	Overcurrent	Delay Latch	$\checkmark$			Yes	Yes						
Va	Overvoltage	Latch	$\checkmark$			Yes	Yes						
	Low voltage	Latch	$\checkmark$			Yes	Yes						
	Overcurrent	Delay Latch	$\checkmark$			Yes	Yes						
	Overvoltage	Stop(no latch)	$\checkmark$			Yes	Yes						
Vex Vey	Overcurrent	Voltage pendency(no latch)	$\checkmark$	V	V	V	V	V	V			Yes	Yes
) (	Overvoltage	Latch	$\checkmark$			Yes	Yes						
VCC	Overcurrent	Delay Latch	$\checkmark$			Yes	Yes						
) (mm4	Overvoltage	Latch	$\checkmark$	Yes									
vpri	Overcurrent	Delay Latch	$\checkmark$	Yes									
Vpr2	Overcurrent	Delay Latch	$\checkmark$	Yes									
	Overvoltage	Latch	$\checkmark$	Yes									
Vaux	Overcurrent (Note 2)	Voltage pendency(no latch)	V	V	V	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				
PSU Heat sink	Temperature	Latch	$\checkmark$	V	V	$\checkmark$	$\checkmark$	$\checkmark$	V	V	$\checkmark$	Yes	

## **4 PROBLEM ANALYSIS**

#### **4.1 OUTLINE OF REPAIR FLOW**



#### 4.2 OUTLINE OF PDP MODULE REPAIR FLOW







#### **4.3 CHECKING THE PRODUCT REQUESTED FOR REPAIR**

Check the serial ID number of the product requested for repair before starting the problem analysis and repair.

Structure of serial ID number is shown below.

(1) Checking serial ID number of PDP module (14 digits)

The serial ID number of the product that is brought in for service and that of the completed panel chassis has the structure as shown below.

The serial ID number is shown on the bar code label that is attached to the rear of the chassis (aluminum).





Serial ID label of panel chassis



* The module serial ID number and the serial ID number of the completed chassis (product requested for repair) are usually the same when the product is brought in for repair for the first time.

#### (2) Checking serial ID number of constituent PC boards (12 digits)

The serial ID number of the module constituent PC boards has the following structure. The serial ID number is shown on the bar code label that is attached to each PC board.



#### **4.4 OPERATION TEST PROCEDURE**



(2) Affix to the stand (jig) the module requested for repair.

- (3) Connect LOGIC board connector CN1 of the module to the Interface board (jig)CN5 with the dedicated signal cable.
- (4) Connect the AC power cable to CN61 on the PSU board of the module requested for repair.

(5) Turn on the AC power to the interface board (jig).

(6) Select the signal used when a problem occurs, or an all white pattern.

(7) Set the PDP go switch on the Interface board (jig) to ON. (The main power of the module is turned on.)

#### **Check Fault Symptom**


# **4.5 FAULT SYMPTOM**

NO	Fault contents	Fault status	3	Suspected fault location	Analysis procedure and measure
1	Entire screen does not light.	After momentarily going on, the screen becomes black immediately or after a few seconds. (Main power is turned off.)		X-SUS Y-SUS PSU Panel chassis LOGIC ABUSL ABUSR	Refer to Chapter 4.6.1
2		Screen lights dimly even on the back screen.		LOGIC	Replace LOGIC board
3	Vertical line	Single vertical line (of different color)		Panel chassis LOGIC	Refer to Chapter 4.6.2
4		Vertical line from the middle of effective scan area (Vertical line of different color)		Panel chassis	Replace panel chassis
5	Vertical bar	Bar width of 1/7 of horizontal size or in multiples of 1/7, is displayed. Abnormal display.		Panel chassis ABUSL ABUSR LOGIC Above boards are connected.	Refer to Chapter 4.6.2
6		Bar width of 3/7 or 4/7 of the screen width, is displayed. Abnormal display. (Vertical line of different color)		ABUSL ABUSR LOGIC Above boards are connected.	Refer to Chapter 4.6.2
7	Horizontal line	Single horizontal line (No light) or single horizontal line does not light among the effective scanning area. Single horizontal line does not light.		Panel chassis	Replace panel chassis
8		Every other line(No light) Entire screen		X-SUS Y-SUS	Replace X-SUS Y-SUS Board

NO	Fault contents	Fault statu	IS	Suspected fault location	Analysis procedure and measure
9	Horizontal bar	Bar width of 1/8 or multiples of 1/8 of the screen height, is displayed. Abnormal (Screen does not light)		Panel chassis	Replace panel chassis
10		Bar width of 1/2 of the screen height. Abnormal display (Screen does not light)		Panel chassis Y-SUS X-SUS Above boards are connected.	Refer to Chapter 4.6.3
11	Image sticking	Fixed display contents are always displayed.	ABCDEF	Panel chassis	Perform all white heat run. After judgment, replace panel chassis
12	Stains	Oval-shaped points having abnormal luminance are scattered in the upper or lower part of screen.	°. ° ° °. °.	Panel chassis	Perform all white heat run. After judgment, replace panel chassis
13	Twinkle	The entire screen momentarily becomes brighter or darker.			
14	Flicker	The entire screen flickers continuously.		Poor connector contact (CN2,3,21,31)	Connector / cable re-connection or Cable exchange
15	Luminance is abnormal	Screen is too dark or too bright. (Out of specifications)			
16	Chrominance is abnormal	Colors cannot be displayed correctly.		LOGIC	Replace LOGIC board
17	Sync is disturbed			LOGIC	Replace LOGIC board
18	Picture distorted			LOGIC	Replace LOGIC board
19	Steps of gradation are skipped	Luminance linearity is poor.		LOGIC	Replace LOGIC board
20	Abnormal sound			PSU X-SUS Y-SUS (Core is broken, or transformer is abnormal.)	Locate cause of abnormality from listening and viewing. Replace the cause of problem.

NO	Fault contents	Fault statu	S	Suspected fault location	Analysis procedure and measure
21	Control on external communication is abnormal	Contrast, color temperature adjustment and Y cannot be changed.		LOGIC	Replace LOGIC board

# 4.6 PROBLEM ANALYSIS PROCEDURE

4.6.1 "The entire screen does not light.(Main power is turned off)" Problem analysis procedure

















#### 4.6.2 "Vertical line/Vertical bar" Problem analysis procedure









### 4.6.3 "Horizontal bar" Problem analysis procedure



# 4.7 PROBLEM ANALYSIS USING A PERSONAL COMPUTER

#### 4.7.1 Connecting a computer

- (1) Set the module in accordance with Chapter 4.4.
- (2) Connect the RS-232C terminal of the computer to the RS-232C terminal of the interface board.
- (3) Turn on the main power to the interface board. (Red LED goes on.)





#### 4.7.2 Preparing a computer

- (1) Turn on the main power to the computer.
- (2) Set the PDPgo switch on the interface board to ON and turn on the main power to the module.
- (3) For computer running MS-DOS:

```
C:\>FHPA1<ENTER>
```

For computer running WINDOWS:

```
Start menu \rightarrow Run \rightarrow FHPA1<ENTER>
```

*1: Use COM1: for the computer's communication port.
*2: Set the communication setup as follows.
Speed: 9600 bps

Data: 7 bits
Parity: none
Stop bit: 1 bit

In Windows, restart the computer after setting the communication setup.

(4) The following menu screen appears.



*3: If the program starts up while the module standby power is not yet turned on, the menu screen will not be displayed.

## 4.7.3 Problem Analysis Procedure

(1) Select the problem analysis menu from the main menu using the ↑key or ↓key and press <ENTER> key to start the program.



(2) Check the error code (hexadecimal number) from the Latest error code read-out menu and locate the faulty position from the following table.

📾 C:¥WINDOWS¥System32¥cmd.exe		
42A1 Problem analysis menu		
**_Condition code	1 (Hex)	The state of the module
Latest error code Previous error Code 2nd previous error code 3rd previous error code 4th previous error code 5th previous error code 6th previous error code 7th previous error code 8th previous error code 9th previous error code	00 (Hex) 00 (Hex)	The latest error code A past error code is shown in new the order.
10th previous error code 11th previous error code 12th previous error code 13th previous error code 14th previous error code	00 (Hex) 00 (Hex) 00 (Hex) 00 (Hex) 00 (Hex) 00 (Hex)	
Error code clear / execute	UU (Hex)	All error code is cleared to 0.
RETURN EXIT		

Example of displaying breakdown analysis

(3) Select RETURN using the ↑key or ↓key and press <ENTER> key to start the program, then the screen returns to the menu screen.

* When EXIT is selected, the screen returns to the WINDOWS or DOS screen.

#### Error code table

ERR	Detect position	Contents	Suspected faulty board (In the order of higher probability of defect)						Remarks	
code	(board)		(1)	(2)	(3)	(4)	(5)	(6)	(7)	
00	LOGIC	STANDBY power is stopped	PSU							PSU temperature has probably increased
04	LOGIC	3.3V power voltage has dropped	LOGIC	PSU						
06		3.3V power startup is faulty	X-SUS	Y-SUS	ADM1-8	PSU	ABUS-L	ABUS-R	LOGIC	
08		1V power voltage has dropped	LOGIC	PSU						
0A		1V power startup is faulty	X-SUS	Y-SUS	ADM1-8	PSU	ABUS-L	ABUS-R	LOGIC	
18		Internal I2C_SCL1_LOW level	LOGIC							
19		Internal I2C_ACK does not respond	LOGIC							
1C		EEPROM initial setting is defective	LOGIC							
1D		EEPROM write-down is defective	LOGIC							
1E		EEPROM user initial setting is defective	LOGIC							
1F		EEPROM factory setting reading is	LOGIC							
24	X-SUS	Vex power voltage has decreased	X-SUS	LOGIC						
25		Vex power voltage is excessive	X-SUS							
26		Vex power startup is faulty.	X-SUS	LOGIC						
28		Vx power voltage has dropped	X-SUS	LOGIC						
29		Vx power voltage is excessive	X-SUS							
2A		Vx power startup is faulty.	X-SUS	LOGIC						
39		Vs power current is excessive (during operation)	X-SUS	Panel	LOGIC					
3B		Vs power current is excessive (during startup)	X-SUS	Panel	LOGIC					
44	Y-SUS	Vey power voltage has dropped	Y-SUS	LOGIC						
45		Vey power voltage is excessive	Y-SUS							
46		Vey power startup is faulty.	Y-SUS	LOGIC						
59		Vs power current is excessive (during operation)	Y-SUS	Panel	LOGIC					
5B		Vs power current is excessive (during startup)	Y-SUS	Panel	LOGIC	1.0.010				
5D	X CUC	Vs power current is excessive (during operation)	Y-SUS	SDM	Panel	LOGIC				
01 62	X-SUS Y-SUS	Vs power voltage is excessive	PSU V CUC		DOLL					
62 64		Vex and Vpy power voltage has	LOGIC	X-SUS	Y-SUS	LUGIC				
65		Vex and Vey power voltage is	X-SUS	Y-SUS						
66		Vex and Vey power startup is faulty.	LOGIC	X-SUS	Y-SUS					
68		Vw power voltage has dropped	Y-SUS	X-SUS	LOGIC					
69		Vw power voltage is excessive	X-SUS							
6A		Vw power startup is faulty.	Y-SUS	X-SUS	LOGIC					
81	ABUS	Va power voltage is excessive	PSU	LOGIC						
82		Va power startup is faulty.	ADM1-8	PSU	LOGIC	ABUS-L	ABUS-R			
99		Va power current is excessive (during operation)	ADM1-8	ABUS-L	ABUS-R	PSU	LOGIC			
9B		Va power current is excessive (during startup)	ADM1-8	ABUS-L	ABUS-R	PSU	LOGIC			

ERR	Detect position	Contents	Suspected faulty board (In the order of higher probability of defect)							Remarks
code	(board)		(1)	(2)	(3)	(4)	(5)	(6)	(7)	1
9D		Va power current is excessive (during operation)	ADM1-8	ABUS-L	ABUS-R	PSU	LOGIC			Excess current is detected in ACCC operation.
A5	ADM1	ADM1 has abnormal heat generation.	ADM1	PSU	LOGIC					It can possibly occur depending
A9	ADM2	ADM2 has abnormal heat generation.	ADM2	PSU	LOGIC					on screen display.
AD	ADM3	ADM3 has abnormal heat generation.	ADM3	PSU	LOGIC					
B1	ADM4	ADM4 has abnormal heat generation.	ADM4	PSU	LOGIC					
B5	ADM5	ADM5 has abnormal heat generation.	ADM5	PSU	LOGIC					
B9	ADM6	ADM6 has abnormal heat generation.	ADM6	PSU	LOGIC					
BD	ADM7	ADM7 has abnormal heat generation.	ADM7	PSU	LOGIC					
C5	ADM8	ADM8 has abnormal heat generation.	ADM8	PSU	LOGIC					
E2	LOGIC	5V power startup is faulty.	X-SUS	Y-SUS	PANEL	PSU	ABUS-L	ABUS-R	LOGIC	
FC	PSU	Detection error of Vs and Va voltage.	PSU	LOGIC						

# **5 DISASSEMBLING AND REASSEMBLING**

Unless otherwise specified, use the torque screwdriver for screw tightening, following the tightening torques below.

Screw size	Tightening torque
M 3	69±0.049Nm (7±0.5kg·cm)
M 4	1.18±0.098Nm (12±1.0kg⋅cm)

## **5.1 EXPLODED VIEW**



42A1_5.1DISASSEMBLE_LOGIC-L_1/2

## **5.2 X-SUS CIRCUIT BOARD REMOVAL/INSTALLATION PROCEDURE**

Note When removing the circuit board after the main power is turned on/off, wait for at least one minute before starting to remove the circuit board. If the circuit board removal is started immediately after turning off the main power, it can result in electric shock or damage to the circuit due to residual electric charge.

Remove the circuit board following the steps below. To install the circuit board, reverse the removal procedure.

- (1) Remove the fixing screws (M3x8) fixing XBB at 4 locations.
- (2) Pull out the XBB board horizontally and disconnect the connectors (CN24, CN25).
- (3) Release the lock of the FPC connector (CN21) and disconnect the signal cable.
- (4) Disconnect the cables from the VH connectors (CN22, CN23).
- (5) Remove the fixing screws (M3x8) fixing XSUS at 5 locations.





* On handling the FPC connector

To release the lock, release it by gently flipping it with the nail of the thumb or forefinger. Never pinch the lock lever with fingers or hook on it (especially with a fingernail). Doing so might damage the lock lever.

(6) Remove the X-SUS board. Make sure that you do not to hold the heat sink when removing the Y-SUS board.



42A1_5. 2 (5) X-SUS

## **5.3 Y-SUS CIRCUIT BOARD REMOVAL/INSTALLATION PROCEDURE**

NoteWhen removing the circuit board after the main power is turned on/off, wait for at<br/>least one minute before starting to remove the circuit board.If the circuit board removal is started immediately after turning off the main power,<br/>it can result in electric shock or damage to the circuit due to residual electric<br/>charge.

Remove the circuit board by following the steps below. To install the circuit board, reverse the removal procedure.

- (1) Remove the fixing screws (M3x8) fixing SDM at 4 locations.
- (2) Pull out the SDM board horizontally and disconnect the connectors (CN34, CN35).
- (3) Release the lock of the FPC connector (CN31) and disconnect the signal cable.
- (4) Disconnect the cables from the VH connectors (CN32, CN33).
- (5) Remove the fixing screws (M3x8) fixing YSUS at 5 locations.



#### Note

#### * On handling the FPC connector

To release the lock, release it by gently flipping it with the nail of the thumb or forefinger. Never pinch the lock lever with fingers or hook onto it (especially with fingernails). Doing so might damage the lock lever. (6)Remove the Y-SUS board.

Make sure that you do not to hold the heat sink when removing the Y-SUS board.



42A1_5. 3 (6) Y-SUS

## 5.4 ABUS-L CIRCUIT BOARD REMOVAL/INSTALLATION PROCEDURE

 Note
 When removing the circuit board after the main power is turned on/off, wait for at least one minute before starting to remove the circuit board.

 If the circuit board removal is started immediately after turning off the main power, it can result in electric shock or damage of the circuit due to residual electric charge.

Remove the circuit board by following the steps below. To install the circuit board, reverse the removal procedure.

- (1) Disconnect the connector CN52 from the ABUS-L board.
- (2) Raise the lock of the FPC connectors CN53, CN54, CN55 and CN56 to release it and remove the ADM flexible board.
- (3) Release the lock of the FPC connector CN51 and disconnect the signal cable (FPC).
- (4) Remove the screws (M3x8) fixing the ADM at the 8 locations.
- (5) Remove the screws (M3x8) fixing the ABUS-L board at the 1 location.



Note



* On handling the FPC connector To release the lock, release it by pulling up the lever.

Never pinch the lock lever with the fingers or push hard on it without a cable in it. Doing so might damage the lock lever.

- (6) Remove the ABUS-L board
- (7) When installing the ABUS-L board, place it so that the ABUS-L board is locked by the tabs for fixing it in position.



42A1_5. 4 (4)~(7) ADM, AbusL

## 5.5 ABUS-R CIRCUIT BOARD REMOVAL/INSTALLATION PROCEDURE

Note When removing the circuit board after the main power is turned on/off, wait for at least one minute before starting to remove the circuit board. If the circuit board removal is started immediately after turning off the main power, it can result in electric shock or damage of the circuit due to residual electric charge.

Remove the circuit board by following the steps below. To install the circuit board, reverse the removal procedure.

- (1) Disconnect the connector CN42 on the ABUS-R board.
- (2) Raise the lock of the FPC connectors CN43, CN44, CN45, CN46 to release it and disconnect the ADM flexible board.
- (3) Release the lock of the FPC connector CN41 and disconnect the signal cable (FPC).
- (4) Remove the screws (M3X8) fixing the ADM at the 8 locations.
- (5) Remove the screws (M3X8) fixing the ABUS-R board at the 1 locations.



Note

* On handling the FPC connector

To release the lock, release it by pulling up the lever. Never pinch the lock lever with the fingers or push hard on it without a cable in it. Doing so might damage the lock lever.



(6) Remove the ABUS-R board.

When installing the ABUS-R board, place it so that the ABUS-R board is locked by the tabs for fixing it in position.



42A1_5. 5 (4)~(7) ADM, AbusR

## 5.6 LOGIC BOARD REMOVAL/INSTALLATION PROCEDURE

Remove the circuit board by following the steps below. To install the circuit board, reverse the removal procedure.

- (1) Disconnect the EH connector CN6.
- (2) Release the lock of the FPC connectors CN1, CN2, CN4, CN5 and disconnect the signal cable (FPC).
- (3) Slide the lock of the FPC connector CN7 toward the PSU board side, then press it down toward the front and remove the PSU signal cable.
- (4) Remove the screws (M3x8) fixing the LOGIC board in position at 2 locations.







* On handling the FPC connector To release the lock, release it by gently flipping it.

Never pinch the lock lever with the fingers or hook onto it (especially with fingernails). Doing so might damage the lock lever.

- (5) Remove the LOGIC board.
- (6) When installing the LOGIC board, place it so that the LOGIC board is locked by the tabs for fixing it in position (at 2 locations).



42A1_5. 6 (4)~(6) LOGIC-L

### 5.7 COMPLETE PANEL CHASSIS REMOVAL/INSTALLATION PROCEDURE

(1) Remove the 6 types of printed-circuit board (X-SUS, Y-SUS, ABUSL, ABUSR, LOGIC, PSU) that are installed in the panel module.

For the removal procedure, refer to Section 5.2 to 5.7.

* Before removing the above 6 types of board, be sure to remove both ends of the single power cable (BLU) and those of the five FPC cables (WHT) that are used to connect the circuit boards.



42A1_5. 8 COMPLETE PANEL CHASSIS REMOVAL

- (2) ***Install the printed-circuit board that was removed in step (1) and fix it in position. (Refer to the exploded view shown in Section 5.1.)
- (3) Print the serial ID number of the product to be repaired on the product label which is prepared separately. Attach the product label to the panel chassis on top of the Y-SUS board (See the photo).





(4) When the installation of the board is complete, route the wires as shown below.



# **6 OPERATION CHECK AND ADJUSTMENT METHOD**

# 6.1 LIST OF CHECK AND ADJUSTMENT ITEMS

		Adjustment position	Check and adjustment Required timing						Labor	required	
Adjustment item (Major item)	Adjustment item (Minor item)	(Name of the part)	When PDP panel is replaced	When X-SUS board is replaced	When Y-SUS board is replaced	When LOGIC board is replaced	When ABUS board is replaced	When PSU board is replaced	Jig/tools	Labor (persons)	Time (minutes)
VR adjustment	Is detection adjustment	X-SUS board VR1							Digital	1	1
	Ve voltage adjustment	X-SUS board VR4							voltmeter,	1	1
	Vw voltage adjustment	X-SUS board VR3	Be su	re to keep	o the defau	screwdriver	1	1			
	Ve voltage adjustment	Y-SUS board VR1								1	1
	Is detection adjustment	Y-SUS board VR2	(Do n	ot change	the VR co	ntrol setti	ngs.)			1	1
	PFC voltage adjustment	PSU board RV301								1	1
	Vs adj1	PSU board RV801								1	1
	Vs adj2	PSU board RV802								1	1
	Va adj2	PSU board RV803								1	1
	Vs f min	PSU board RV901								1	1
	Vpr adj	PSU sub-board RV201								1	1
	Vcc f min	PSU sub-board RV150								1	1
	Vcc adj	PSU sub-board RV270								1	1
	Va adj1	PSU sub-board RV860								1	1
	Vaa	PSU sub-board RV861	$\Box \setminus$							1	1
	Va f min	PSU sub-board RV950								1	1
	Vs voltage adjustment	LOGIC board(Vsvolt)	0		:	0 O	:		Interface	1	1
	Va voltage adjustment	LOGIC board(Vavolt)	0			0			board,	1	1
Parameter	Vw voltage adjustment	LOGIC board(Vwvolt)	0			0			personal	1	1
adjustment	Vx voltage adjustment	LOGIC board(Vxvolt)	0			0			computer, Digital voltmeter	1	1
	Error history clear	LOGIC board (EEPROM)	0	0	0	0	0	0	Interface board.	1	1
Default setting	Accumulated power-on time clear	LOGIC board (EEPROM)	0						personal computer	1	1

O : Check, adjustment, or setup

# 6.2 CHECK AND ADJUSTMENT METHOD

#### 6.2.1 Check and adjustment procedure


# 6.2.2 Parameter adjustment

Item	Adjustment items	Measurement point	Adjustment value (conditions)	Remarks
1	Vs voltage adjustment	X-SUS board PVS	Voltage setting label indication value* ; ±1% (all black)	
2	Va voltage adjustment	X-SUS board PVA	Voltage setting label indication value* ; ±1% (all black)	
3	Vw voltage adjustment	X-SUS board PVW	Voltage setting label indication value* ; ±1% (all black)	
4	Vx voltage adjustment	X-SUS board PVX	Voltage setting label indication value* ; ±1% (all black)	

#### List of parameter adjustment items

*: Voltage setting label shows the following messages at the top left of the back of the chassis.



(1) From the main menu, select the voltage adjustment menu with the ↑ key or ↓ key and press the <ENTER> key.

<u> </u>	#WINDOWS#System32#cma	.exe			
42	Al Main menu	KRev. S	SVA1E 1.	02>	
**_	Module information me POWER ON menu Problem analysis menu Voltage adjustment me Accumulated power-on Logic board change me	nu nu time mer nu	nu		
	EXIT				
Γ					
Γ					

(2) From the voltage adjustment menu, adjust parameters in the order starting from Vs, Va, Vw, and Vx.

Select parameter with the  $\uparrow$  key or  $\downarrow$  key and adjust the parameter with the  $\rightarrow$  key (increment) or  $\leftarrow$  key (decrement). The adjustment values are shown on the voltage label that is attached to the panel chassis.

CXWINDOWS¥System32¥cmd.exe	
** Voltage adjustment / Vs[V]= Voltage adjustment / Va[V]= Voltage adjustment / Vw[V]= Voltage adjustment / Vx[V]=	86.65 63.53 200.2 60.22
RETURN EXIT	

** numbers are shown in decimal values.

Input the numeric value/dot and press the <ENTER> key and then press the <ENTER> key again to set the adjustment value directly.

(3) Select RETURN with the ↑ key or ↓ key and press the <ENTER> key to return to the menu screen.

# 6.2.3 Operation performance check items

(1) Environmental conditions
 Temperature: Room temperature
 Judgment distance: 1 meter from panel screen
 Preheat run: 5 minutes with entire screen lit (white)

# (2) Test patterns:

PSEL	Push SW	Display pattern	Size	Details
Н	0	White screen		
Н	1	Cross slash	Large	24 × 24
Н	2	Vertical stripe	Every other dot	
Н	3	Horizontal stripe	Every other line	
Н	4	Color bars	Vertical bar	H_blk divided in 8
Н	5	Gray scale	Horiz. direction	Every 3 dots
Н	6	Color gray scale	Horiz. direction	Every 3 dots
Н	7	Divided WINDOW	9 blocks	Follow the ROM
L	0	1% WINDOW	Center	Follow the ROM
L	1	Cross slash	Small	12 × 12
L	2	Vertical stripe	Every other cell	
L	3	Horizontal stripe	Every 2 lines	
L	4	Color bars	Horizontal bar	V_blk divided in 8
L	5	Gray scale	Vert. direction	Every 4 dots
L	6	Color gray scale	Vert. direction	Every 4 dots *2
L	7	Divided WINDOW	16 blocks	Follow ROM *3



PDPGO SW CPUGO SW

#### (3) Judgment

Item	Test items	Test signal	Judgment criterion	
1	Brightness non-uniformity	White screen (W)	Brightness non-uniformity in the form of stripes must not be visible in vertical and horizontal directions.	
2	Black noise	Horizontal gray scale (Each color of R/G/B)	<ul> <li>Rank 3 or higher in the 5-step evaluation.</li> <li><rank></rank></li> <li>5: No noise</li> <li>4: Small noise is intermittently visible</li> <li>3: Noise of 1 line is not visible continuously</li> <li>2: Noise occurs continuously</li> <li>1: Much noise occurs continuously</li> </ul>	
3	Number of defects	The entire screen lights (Each color of W/R/G/B)	Conforms to Section 1.3.2 Display quality specifications.	
4	Number of extra dots		However, when Delivery Specifications Shee are prepared for each client, the specification	
5	Number of flickering dots		shown in the Delivery Specifications Sheet must be met.	

(4) Power ON/OFF

*Power ON

Set both PDPGO-SW and CPUGO-SW to CN.

*Power OFF

Set only PDPGO-SW to OFF.(The CPUGO-SW remains ON.)

## 6.2.4 Heat Run Test

- (1) Set the module by following the same procedure as that for Problem Analysis in Section 4.7.
- (2) From the main menu, select the POWER ON menu with the  $\uparrow$  key or  $\downarrow$  key and press the <ENTER> key.

<u>C:\</u> (	C:¥WINDOWS¥System32¥cmd	d.exe
42	2A1 Main menu	<rev. 1.02="" sva1e=""></rev.>
**	Module information me POWER ON menu Problem analysis menu Voltage adjustment me Accumulated power-on Logic board change me	enu u enu time menu enu
	FXIT	
	LAIT	

(3) From the POWER ON menu, select Internal pattern generation with the ↑ key or ↓ key and press the <ENTER> key. When you press the → key, the main power of the module is turned on. (When you press the ← key, the main power is turned off.)

C:¥WINDOWS¥System	32¥cmd.exe		
42A1 POWER ON men	u		
Internal patten 00 - chansins o 01 - blue 02 - green 03 - cyan 04 - red 05 - magenta 06 - yellow 07 - white 08 - black **_Burn-in start /	n selection olors (full picture) execute	00 (Hex)	
RETURN EXIT			

(4) To change the internal pattern, select the internal pattern selection from the POWER ON menu using the ↑(up) or ↓(down) key, and press the <ENTER> key.

Setup value	Display pattern	Setup value	Display pattern
00	01 to 08 patterns are displayed every 2 seconds.	05	Entire screen is cyan
01	Entire screen is blue	06	Entire screen is yellow
02	Entire screen is red	07	Entire screen is white
03	Entire screen is magenta	08	Entire screen is black
04	Entire screen is green	F6	Plant burn-in pattern

From the POWER ON menu, select Burn-in start with the ↑ key or ↓ key

and press the <ENTER> key. The display pattern is automatically generated in PDP.

(6) Select RETURN with  $\uparrow$  key or  $\downarrow$  key and press <ENTER> key to return to the menu screen.

#### 6.2.5 Logic board parameter forwarding

- (1) The module is set according to the same to failure analysis procedure in clause 4.7. The logic board before being exchanged is installed in the module.
- (2) From the main menu, select change Logic board menu with the ↑ key or ↓ key and press the <ENTER> key.

<b>C:\</b>	C:¥WINDOWS¥Sy	stem32¥cmd.e	exe			
42	Al Main menu	1	<rev. sva1<="" td=""><td>E 1.02&gt;</td><td></td><td></td></rev.>	E 1.02>		
**	Module infor POWER ON mer Problem anal Voltage adju Accumulated Logic board	rmation mer hu lysis menu ustment mer power-on t change mer	nu nu ime menu nu			
	EXIT					

(3) From the logic board change menu, select data copy with the ↑ key or ↓ key and press the <ENTER> key. Data is read before the Logic board is exchanged.

_	
C:/	C:¥WINDOWS¥System32¥cmd.exe
4:	2A1 Logic board change menu
**	Data Copy (PDP -> Temp. FILE)/execute Data Paste(Temp. FILE -> PDP)/execute
	RETURN EXIT

(4) The Logic board is exchanged.

(5) From the logic board change menu, select data paste with the ↑ key or ↓ key and press the <ENTER> key. Data is written in the exchanged Logic board.



(6) Select RETURN with  $\uparrow$  key or  $\downarrow$  key and press <ENTER> key to return to the menu screen.

#### 6.2.6 Accumulation time reset

- (1) The module is set according to the same to failure analysis procedure in clause 4.7.
- (2) From the main menu, select Power-on time menu with the  $\uparrow$  key or  $\downarrow$  key and press the <ENTER> key.

🗈 C:¥WINDOWS¥System32¥cmd.exe
42A1 Main menu <rev. 1.02="" sva1e=""></rev.>
Module information menu POWER ON menu Problem analysis menu Voltage adjustment menu ***_Accumulated power-on time menu Logic board change menu
EXIT

(3) From the Power-on time menu, select Operation hours with the ↑ key or ↓ key and press the <ENTER> key. The Operation hour is input. *It is not possible to change in the energizing time according to the version of the service software.

🔤 C:¥WINDOWS¥System32¥cmd.exe	
42A1 Accumulated power-on time menu	
**_Running time indication: [hh:mm:ss]	4: 9:36
RETURN EXIT	

- (4) "minute" is continuously input and < ENTER > key is pushed.
- (5) "Second" is continuously input and < ENTER > key is pushed.
- (6) Select RETURN with ↑key or ↓key and press <ENTER> key to return to the menu screen.

#### 6.2.7 Setup before shipment

Before shipment from service, perform the following setup or initialization.

 Initial values that are shown in the List of EEPROM contents in Section 3.3.1. (Main power of the module is turned off.) Clearing the error codes

From the each menu, select EXIT menu with the  $\uparrow$  key or  $\downarrow$ key and press the <ENTER> key.

Shipping the set screen is displayed, and "Y" is pushed.

In shipping the set processing, there is a thing that the power supply of the module turns on automatically.

The shipment setting ends, and when the power supply of the module is on, the power supply is turned off automatically.

# Shipment from service setting?(input the "Y" or "N" key)

"N" When the key is pushed, the shipment setting is not done, and the power supply is turned off.

# 7 37A1 Mechanical Drawing (1) FPF37C128128UB- 63



# (2)FPF37C128128UB-73





37A1_5. 1 DISASSEMBLE_LOGIC-L_2-2



37A1_5. 2 (5) X-SUS



37A1_5. 3 (6) Y-SUS



37A1_5. 4 (4)~(7) ADM, AbusL



37A1_5. 5 (4)~(7) ADM, AbusR



37A1_5. 6 (4)~(6) LOGIC-L



37A1_5. 8 COMPLETE PANEL CHASSIS REMOVAL

# A B THE PARTS INFORMATION

# Module Repair Parts List

	Model name	Panel Module type	Part Number	Description	Note
1	KE-P37XS1 (AEP)	FPF37C128128UB-73	9-885-056-69	FPF22R-XSS0003	
2	KDE-P37XS1 (UK)		9-885-056-70	FPF22R-YSS0004	
3			9-885-056-71	FPF22R-LGC0004	
4			9-885-063-34	FPF22R-ABR0014	
5			9-885-063-35	FPF22R-ABL0013	
6			9-885-063-33	Panel module FPF37C128128UB-73	

	Model name	Panel Module type	Part Number	Description	Note
1	KE-P42XS1 (AEP)	FPF42C128128UC-53	9-885-056-75	FPF23R-XSS0005	
2	KDE-P42XS1 (UK)		9-885-056-76	FPF23R-YSS0006	
3	KE-MX42A1 (HK), (ME)		9-885-056-77	FPF23R-LGC0006	
4	KE-MX42S1 (OCE)		9-885-056-78	FPF23R-ABR0002	
5			9-885-056-79	FPF23R-ABL0001	
6			9-885-059-67	Panel module FPF42C128128UC-53	

	Model name	Panel Module type	Part Number	Description	Note
1	KE-MX42M1 (CH)	FPF42C128128UC-59	9-885-056-75	FPF23R-XSS0005	
2			9-885-056-76	FPF23R-YSS0006	
3			9-885-056-77	FPF23R-LGC0006	
4			9-885-056-78	FPF23R-ABR0002	
5			9-885-056-79	FPF23R-ABL0001	
6			9-885-068-67	Panel module FPF42C128128UC-59	(for CH only)

English 2004FL08-Data Made in Japan © 2004. 6